Baccalauréat S Amérique du Nord 1er juin 2016

Exercice 4 5 points


Candidats N'AYANT PAS SUIVI l'enseignement de spécialité mathématiques


On considère la pyramide régulière SABCD de sommet S constituée de la base carrée ABCD et de triangles équilatéraux représentée ci-dessous.

Le point O est le centre de la base ABCD avec OB \(= 1\). On rappelle que le segment [SO] est la hauteur de la pyramide et que toutes les arêtes ont la même longueur.

  1. Justifier que le repère \(\left(\text{O}~;~ \vec{\text{OB}},~\vec{\text{OC}},~\vec{\text{OS}}\right)\) est orthonormé. Dans la suite de l'exercice, on se place dans le repère \(\left(\text{O}~;~ \vec{\text{OB}},~\vec{\text{OC}},~\vec{\text{OS}}\right)\).
  2. On définit le point K par la relation \(\vec{\text{SK}} = \dfrac{1}{3} \vec{\text{SD}}\) et on note I le milieu du segment [SO].
    1. Déterminer les coordonnées du point K.
    2. En déduire que les points B, I et K sont alignés.
    3. On note L le point d'intersection de l'arête [SA] avec le plan (BCI). Justifier que les droites (AD) et (KL) sont parallèles.
    4. Déterminer les coordonnées du point L.
  3. On considère le vecteur \(\vec{n}\begin{pmatrix}1\\1\\2\end{pmatrix}\) dans le repère \(\left(\text{O}~;~ \vec{\text{OB}},~\vec{\text{OC}},~\vec{\text{OS}}\right)\).
    1. Montrer que \(\vec{n}\) est un vecteur normal au plan (BCI).
    2. Montrer que les vecteurs \(\vec{n},\: \vec{\text{AS}}\) et \(\vec{\text{DS}}\) sont coplanaires.
    3. Quelle est la position relative des plans (BCI) et (SAD) ?

ImprimerE-mail

Statistiques

Visiteurs
167
Articles
1392
Compteur d'affichages des articles
7385075