Baccalauréat S Liban 31 mai 2016

 

 

Exercice 1 4 points


Commun à tous les candidats


On considère un solide ADECBF constitué de deux pyramides identiques ayant pour base commune le carré ABCD de centre I.
Une représentation en perspective de ce solide est donnée  en annexe (à rendre avec la copie) .
Toutes les arêtes sont de longueur \(1\). L'espace est rapporté au repère orthonormé \(\left(\text{A};\vec{\text{AB}},\vec{\text{AD}},\vec{\text{AK}}\right)\).

    1. Montrer que IE \(= \dfrac{\sqrt{2}}{2}\). En déduire les coordonnées des points I, E et F.
    2. Montrer que le vecteur \(\vec{n}\begin{pmatrix}0\\- 2\\\sqrt{2}\end{pmatrix}\) est normal au plan (ABE).
    3. Déterminer une équation cartésienne du plan (ABE).
  1. On nomme M le milieu du segment [DF] et N celui du segment [AB].
    1. Démontrer que les plans (FDC) et (ABE) sont parallèles.
    2. Déterminer l'intersection des plans (EMN) et (FDC).
    3. Construire sur l' annexe (à rendre avec la copie)  la section du solide ADECBF par le plan (EMN).

      Annexe de l'exercice 1 ( A rendre avec la copie)
      Annexe Ex1

ImprimerE-mail

Statistiques

Visiteurs
167
Articles
1392
Compteur d'affichages des articles
7385050