Bac S 2013 Polynésie Probabilités

oui
non
S
Année 2013
Polynésie
Probabilités
Probabilités conditionnelles,Loi normale,Echantillonnage

Exercice 3 : 5 points

Commun à tous les candidats

Les \(3\) parties peuvent être traitées de façon indépendante.

Thomas possède un lecteur MP3 sur lequel il a stocké plusieurs milliers de morceaux musicaux.
L'ensemble des morceaux musicaux qu'il possède se divise en trois genres distincts selon la répartition suivante : 30 % de musique classique, 45 % de variété, le reste étant du jazz.
Thomas a utilisé deux qualités d'encodage pour stocker ses morceaux musicaux : un encodage de haute qualité et un encodage standard. On sait que :

  • les \(\dfrac{5}{6}\) des morceaux de musique classique sont encodés en haute qualité.
  • les \(\dfrac{5}{9}\) des morceaux de variété sont encodés en qualité standard.



On considérera les évènements suivants :

  • \(C\) : «Le morceau écouté est un morceau de musique classique » ;
  • \(V\) : «Le morceau écouté est un morceau de variété »;
  • \(J\) : «Le morceau écouté est un morceau de jazz » ;
  • \(H\) :«Le morceau écouté est encodé en haute qualité »;
  • \(S\) :«Le morceau écouté est encodé en qualité standard ».



Partie 1
Thomas décide d'écouter un morceau au hasard parmi tous les morceaux stockés sur son MP3 en utilisant la fonction «lecture aléatoire ».
On pourra s'aider d'un arbre de probabilités.

  1. Quelle est la probabilité qu'il s'agisse d'un morceau de musique classique encodé en haute qualité ?
  2. On sait que \(P(H)=\dfrac{13}{20}\).
    1. Les évènements \(C\) et \(H\) sont-ils indépendants ?
    2. Calculer \(P(J \cap H)\) et \(P_J(H)\).



Partie 2

Pendant un long trajet en train, Thomas écoute, en utilisant la fonction «lecture aléatoire » de son MP3, 60 morceaux de musique.

  1. Déterminer l'intervalle de fluctuation asymptotique au seuil 95 \% de la proportion de morceaux de musique classique dans un échantillon de taille 60.
  2. Thomas a comptabilisé qu'il avait écouté 12 morceaux de musique classique pendant son voyage. Peut-on penser que la fonction «lecture aléatoire »{} du lecteur MP3 de Thomas est défectueuse ?



Partie 3
On considère la variable aléatoire \(X\) qui, à chaque chanson stocké sur le lecteur MP3, associe sa durée exprimée en secondes et on établit que \(X\) suit la loi normale d'espérance \(200\) et d'écart-type \(20\).
On pourra utiliser le tableau fourni en annexe dans lequel les valeurs sont arrondies au millième le plus proche.

On écoute un morceau musical au hasard.

  1. Donner une valeur approchée à \(10^{-3}\) près de \(P(180 \leqslant X \leqslant 220)\).
  2. Donner une valeur approchée à \(10^{-3}\) près de la probabilité que le morceau écouté dure plus de 4 minutes.

ImprimerE-mail

Statistiques

Visiteurs
164
Articles
1391
Compteur d'affichages des articles
7123502